라벨이 데드타임인 게시물 표시

22. Z 변환(Z-transform), 적분과 1차 함수 그리고 데드 타임((Integrator with first order and dead time)

이미지
Z 변환(Z-transform), 적분과 1차 함수 그리고 데드 타임(Integrator with first order and dead time) Integrator with first order and dead time,  Laplace 모델의  Z 변환은 역변환된 시간함수로 구한다. \[ f(t)=f(t-θ)\frac{1}{τ_1} \left(1-e^{-\frac{τ_1}{τ_2}  t}\right) \] 적분과 데드타임으로 이루어진 1차 함수의 Z 변환과 특성 위의 역변환된 시간함수를 라플라스 & Z 변환표를 참조하여 변환한다. \[ δ(n-k)  → Z→ Z^{-k} \] \[ 1(k)  → Z→  \frac{1}{1-z^{-1} } \] \[ e^{-akT}  → Z→  \frac{1}{1-e^{-aT} z^{-1}}  \] δ(n-k)에서 횟수 n은 시간 t이고, 지연횟수 k는 지연시간 θ이고, \(e^{-akT}\)의 a는 \(\frac{τ_1}{τ_2}\) T이다. \[ \begin{align} F(z)&= z^{-θ} \frac{1}{τ_1}  \left(\frac{1}{1-z^{-1}}-\frac{1}{1-e^{-\frac{τ_1}{τ_2} T}  z^{-1}}\right)\\[12pt]&= z^{-θ}  \frac{1}{τ_1} \left\{\frac{(1-e^{-\frac{τ_1}{τ_2} T}  z^{-1} )-(1-z^{-1} )}{(1-z^{-1} )(1-e^{-\frac{τ_1}{τ_2}  T}  z^{-1} } \right\}\\[12pt]&= z^{-θ} \frac{1}{τ_1}  \left\{\frac{(-e^{-\frac{τ_1}{τ_2} T}+1) z^{-1}}{1+(-e^{-\frac{τ_1}{τ_2}  T}+1) z^{-1}+e^{-...

21. 라플라스(Laplace), 적분과 1차 함수 그리고 데드 타임(Integrator with first order and dead time)

이미지
라플라스(Laplace), 적분과 1차 함수 그리고 데드 타임(Integrator with first order and dead time) Laplace 모델의 1차 함수를 살펴보자. \[ laplace \ 1차 \ 함수\ =  \ \frac{1}{1+s} \] 라플라스 1차 함수에서 적분모델 \(\frac{1}{s}\)을 가지게 되는 전달함수는 아래와 같다. \[ \frac{1}{s}\cdot \frac{1}{1+s} = \frac{1}{s+s^2} \] 적분 모델이 더해진 라플라스 1차함수에서 지연 특성을 가지는 dead time과 시상수를 추가하면 다음과 같다. \[ \frac{e^{-θs}}{τ_1 s+τ_2 s^2} \] 여기서 θ는 dead time, τ1, τ2는 시상수(Time constant)이다. 적분과 데드타임으로 이루어진 1차 함수 특성 적분과 데드 타임 그리고 시상수로 이루어진 라플라스 1차 함수를 역변환하자. \[ \begin{align} &\frac{e^{-θs}}{τ_1 s+τ_2 s^2 } \\[12pt]&→ L^{-1}→\\[12pt] &f(t-θ)\cdot \frac{1}{τ_1}  \left(1-e^{-\frac{τ_1}{τ_2} t} \right) \end{align} \] 전달함수 F(s)의 역변환 과정은 다음과 같다. \[ \begin{align} F(s)&=\frac{e^{-θs}}{τ_1 s+τ_2 s^2 }\\[12pt]&=e^{-θs}\frac{1}{τ_1 s+τ_2 s^2}\\[12pt]&=e^{-θs} \frac{1}{s}\frac{1}{τ_2 s+τ_1}\\[12pt]&=e^{-θs}  \frac{τ_2}{τ_2 s(τ_2 s+τ_1)}\\[12pt]&=e^{-θs}  τ_2 \left\{\frac{1}{τ_2 s(τ_2 s+τ_1)} \right\}\\[12pt]&=e^{-θs}  τ_2 ...

20. Z 변환(Z-transform), 적분과 데드타임(Integrator with dead time)

이미지
Z 변환(Z-transform), 적분과 데드타임(Integrator with dead time) 계단 함수(Step function)의 정의를 살펴보자. \[ f(t)=\begin{cases} 1 & (t≥0) \\ 0 & (t<0) \end{cases} \] 계단함수의 Z 변환은 아래와 같이 표현된다. \[ \begin{align} F(z)&=Z[f(k)]=\sum_{k=0}^∞ z^{-k}\\[12pt]&=1+z^{-1}+z^{-2}+⋯\\[12pt]&=  \frac{1}{1-z^{-1} } \end{align} \] 계단함수의 Z변환은 아래와 같다. \[ Z[f(t-nT)]=z^{-n} F(z)\] 적분과 데드타임으로 이루어진 Z 변환 함수의 특성 계단 함수 x(kT)를 1T만큼 지연 시킨 함수 x(k-T)는 아래와 같다. \[ x(k-T)=\begin{cases}1   & (k≥T) \\ 0   & (k<T) \end{cases} \] 이것을 Z 변환으로 표현하면 다음과 같다. \[ Z[x(kT-T)]=z^{-1} Z[x(kT)]= \frac{z^{-1}}{1-z^{-1}} \] 시간 지연을 가지는 함수로 표현하자. \[ \begin{align} L\left(\frac{e^{-θs}}{τS}\right)&=e^{-θs}\cdot \frac{1}{τ}\cdot \frac{1}{s}\\[12pt]&=\frac{1}{τ}\cdot Z[f(kT-θT)\cdot 1(k)]\\[12pt]&=Kp\cdot z^{-θ} Z[1(k)]= \frac{ \frac{1}{τ}\cdot z^{-θ}}{1-z^{-1} } \end{align} \] 차분 방정식 형태로 나타내자. \[ F(z)=\frac{Output(zero-state response)}{Input}=\frac{Y(z)}{X(z)}\] \[ (Input)Y(z)=(Output)...

19. 라플라스(Laplace), 적분과 데드타임(Integrator with dead time)

이미지
라플라스(Laplace), 적분과 데드타임(Integrator with dead time) 적분은 특정 구간에서 함수의 넓이를 구할 때 사용한다. 함수 f(t)에 \(e^{-st}\)를 곱해 0에서 t까지 적분하였을 때 적분 값이 존재하는 경우에 이것을 라플라스 적분 함수라고 하고, s에 관한 함수로 표현한다. 함수 f(x)를 시간 0에서 t까지 적분하는 함수는 다음과 같다. \[ \int_0^t f(x)  dx=u,  u'=f(t) \] \[ e^{-st}=v',v= -\frac{1}{s }e^{-st} \] \[ \int u v'=u v- \int u' v \] 라플라스 정의에 따라 변환하면 다음과 같다. \[ \begin{align} L\left[\int_0^t f(x)  dx\right]&=\int_0^∞\left[\int_0^t f(x)dx\right]  e^{-st} dt\\[12pt]&=\left[-\frac{1}{s} e^{-st}  \int_0^t f(x) dx\right]_0^\infty - \int_0^∞ \left[-\frac{1}{s} e^{-st} \right]f(t)dt\\[12pt]&=\frac{1}{s} \int_0^∞ f(t) e^{-st} dt=\frac{1}{s} F(s) \end{align} \] 적분과 데드타임 함수의 응답특성 \(\frac{1}{s}\)은 적분 함수로 나타내며, 지연 특성의 dead time과 시상수 형태의 적분 함수는 다음과 같다. \[ \frac{e^{-θs}}{τs} \] 위의 함수에서 θ는 dead time, τ는 시상수(Time constant)이다. Dead time θ와 시상수 τ를 가지는 \(\frac{e^{-θs}}{τs}\)는 다음과 같다. \[ \begin{align} L\left[\frac{1}{τ} u(t-θ)\right]&=\int_0^∞ e^{-st}  \frac{1}{τ} u(t-θ)d...

4. Z 변환(Z-transform), 데드 타임 1차 함수와 게인(First order with dead time and gain)

이미지
이득을 가진 데드 타임 1차 함수( First order with dead time and gain)의  Z 변환 앞에서 서술한   이득을 가진 데드 타임 1차 함수( First order with dead time and gain)의 라 플라스 변환을 Z 변환을 통한 차분 방정식(Difference Equation)을 활용하여 디지털 시스템에 적용해 보자. Laplace 변환과 Z 변환에서 설명한 전달 함수의 관계에서 이득을 가진 데드 타임 1차 함수를 대입하면 다음과 같다. \[ \begin{align} F(z) &=Z\left\{(1-z^{-1})\frac{F(s)}{s}\right\} \\[12pt] &=(1-z^{-1})Z\left\{\frac{F(s)}{s}\right\} \\[12pt] &=(1-z^{-1} )Z\left\{ \frac {\frac{K_p e^{-θs}}{1+τs}}{s}\right\} \\[12pt] &=(1-z^{-1} )Z\left\{ \frac{K_p e^{-θs}}{s(1+τs)}\right\} \\[12pt] &=(1-z^{-1})Z\left\{K_p e^{-θs}\frac{1}{τs+1}\frac{1}{s}\right\} \\[12pt] &=(1-z^{-1})Z\left\{K_p e^{-θs} \frac{1}{τ}\frac{1}{s+\frac{1}{τ}}\frac{1}{s}\right\} \end{align} \] 여기서 \( e^{-θs} \)는 \(z^{-k} \)와 같으므로 \( z^{-θ}\)이고, \( K_p\)와 \(\frac{1}{τ}\)은 상수이므로   \[ =K_p  \frac{1}{τ} z^{-θ} (1-z^{-1})Z\left\{\frac{1}{s+\frac{1}{τ}}  \frac{1}{s}\right\} \] 로 나타낼 수 있고, \( \frac{1}{s}\)의 역변환은 \(u(t)\)...

3. 라플라스(Laplace), 데드 타임 1차 함수와 이득(First order with dead time and gain)

이미지
이득을 가진 데드 타임 1차 함수( First order with dead time and gain)의 라 플라스 변환 시스템을 Laplace 전달 함수로 나타내게 되면 Laplace 연산자인 s에 따라 차수를 나타내며 최고 차수에 따라 1차, 2차, 3차 함수라고 한다. 1차 함수의 일반적인 표현은 다음과 같이 표현할 수 있다. \[ Laplace First order function=  \frac{1}{(1+s)} \] 위 식에서 시스템 이득(Kp)과 데드 타임(dead time) 그리고 시상수(time constant: τ)를 추가하면 다음과 같이 표현할 수 있다. \[ \frac{K_p e^{-θs}}{1+τs} \] Kp는 시스템 이득(Gain), θ는 dead time, τ는 시상수(Time constant)이다. 시상수는 시간 상수라고도 하며 시스템의 특성을 결정하는 주요 지표이다. 위의 수식을 전달함수 F(s)라 하고, 풀어보면 아래와 같이 나타낼 수 있다. \[ \begin{align} F(s) &=\frac{K_p e^{-θs}}{1+τs} = K_p e^{-θs}\frac{1}{τs+1} \\[12pt] &= K_p e^{-θs}\frac{\frac{1}{τ}}{s+\frac{1}{τ}} = K_p e^{-θs}\frac{1}{τ}\frac{1}{s+\frac{1}{τ}} \end{align} \] \( \frac{1}{τ}\)를 a라고 하면, \( \frac{1}{s+\frac{1}{τ}}\)은 \(\frac{1}{s+a}\)이고 역변환하면 \(e^{-at}\) 이다. 라플라스 정의에 따라 확인해보자. \[ \begin{align} F(s) =L[f(t)] &=\int_0^∞ e^{-st} f(t)dt \\[12pt] &=\int_0^∞ e^{-st}e^{-at} dt \\[12pt] &= \int_0^∞ e^{-(s+a)t} dt \\[12pt] &=\frac{1}{s...

2. 이득을 가지는 데드 타임(Dead time with gain)과 라플라스(Laplace) & Z 변환(Z-transform)

이미지
데드 타임과 이득( Dead time with gain) 데드 타임(Dead time) Dead time은 입력에 따라 출력이 변하는 시스템에서 입력 시점에서 출력 시점까지, 입력 변화에 따른 출력 변화가 나타나기까지 시간이 걸리는데 이 지연되는 시간을 데드 타임이라고 한다. 이러한 시스템을 모델로 만들 때 지연 특성(time shift, delay time)을 반영하고 이것을 수식으로 표현하면 아래와 같이 나타낼 수 있다. \[ K_{p} e^{-\theta s} \] Kp는 시스템 이득 또는 프로세스 이득(Gain)이고 θ는 데드 타임이다. 데드 타임의 라플라스 모델 위의 식을 Laplace 모델로서 시간에 대한 함수로 표현하면 \[ f(t) = K_p L(e^{(-\theta s)}) = K_p \cdot f(t-\theta) \] 여기에서 \( L(e^{(-\theta s)} ) \)의 L(  )은 괄호 안의 수식이 Laplace 영역(domain)이다. 그리고 우변 항의 \( K_p \)는 시스템 이득을 나타낸다. \( e^{(-\theta s)} \)는 지연 특성을 나타내는 것으로 \( f(t-\theta) \)로 표현할 수 있다. 이것은 연결된 함수를 θ만큼 이동한 것으로 그림으로 표현하면 아래와 같다.   지연 특성 이 함수는 \[ g(t) = \begin{cases} 0 & \ (t < \theta) \\ f(t-\theta) & \ (t\ge \theta) \end{cases} \] 으로 정의된다. 이것을 변환하면 \[ \begin{align} L[g(t)] &= \int_0^\infty e^{-st}g(t)dt \\[10pt] &= \int_0^\theta e^{-st}g(t)dt + \int_\theta^\infty e^{-st}g(t)dt \end{align} \] 우변 항의 0에서 θ구간은 0이고, θ에서 ∞구간은 \( f(t-\theta)\)이다. \[ \begi...