라벨이 Overdamped인 게시물 표시

17. Z 변환(Z-transform), Overdamped, Damping ratio와 고유진동수로 이루어진 2차 전달함수, ζ > 1

이미지
Z 변환(Z-transform), Overdamped, Damping ratio와 고유진동수로 이루어진 2차 전달함수,  ζ>1 역변환된 시간함수로 구한다. 역변환된 함수는 다음과 같다. \[ f(t)=K_p\cdot f(t-θ)\left\{1-\frac{e^{-(ζ-\sqrt{ζ^2-1}) ω_n t}}{2\sqrt{ζ^2-1}(ζ-\sqrt{ζ^2-1})}+\frac{e^{-(ζ+\sqrt{ζ^2-1}) ω_n t}}{2\sqrt{ζ^2-} (ζ+\sqrt{ζ^2-1}) }  \right\} \] \[ \begin{align} =K_p\cdot f(t-θ)& \left\{1-\frac{1}{2\sqrt{ζ^2-1} (ζ-\sqrt{ζ^2-1}) }e^{-(ζ-\sqrt{ζ^2-1}) ω_n t}\right.\\[12pt]&\left.+  \frac{1}{2\sqrt{ζ^2-1} (ζ+\sqrt{ζ^2-1} ) }e^{-(ζ+\sqrt{ζ^2-1}) ω_n t} \right\} \end{align} \] ζ>1, Overdamped인 경우 라플라스와 Z 변환표를 참조하자. \[ δ(n-k)  → Z→ z^{-k} \] \[ 1 → Z→  \frac{1}{1-z^{-1}} \] \[ e^{-akT}  → Z→  \frac{1}{1-e^{-aT} z^{-1} } \] δ(n-k)에서 횟수 n은 시간 t이고, 지연횟수 k는 지연시간 θ이고, \(e^{-akT}\)의 a는 각각 \((ζ-\sqrt{ζ^2-1}) ω_n \), \((ζ+\sqrt{ζ^2-1}) ω_n\)이다. \[ \begin{align} F(z)=K_p\cdot z^{-θ}\cdot &\left(\frac{1}{1-z^{-1}}-\frac{1}{2\sqrt{ζ^2-1}  (ζ-\sqrt{ζ^2-1})} \frac{1}{1-e^{-(ζ-\sqrt{ζ^2-1}) ω_n T} z^{-1} ...

11. 라플라스(Laplace), Damping ratio ζ와 고유진동수 ωn으로 이루어진 2차 전달 함수의 Over-damped

이미지
라플라스(Laplace), Damping ratio  ζ와 고유진동수 ωn으로 이루어진 2차 전달 함수의 Over-Damped Damping ratio, ζ가 1보다 크면 과도하게 감쇠된 Over-damped의 형태로 나타난다. 역변환된 수식은 다음과 같다. \[ \begin{align} f(t)=K_p \cdot f(t-θ)\left\{ 1-\frac{e^{-(ζ-\sqrt{ζ^2-1}) ω_n t}}{2\sqrt{ζ^2-1} (ζ-\sqrt{ζ^2-1})} +\frac{e^{-(ζ+\sqrt{ζ^2-1}) ω_n t}}{2\sqrt{ζ^2-1} (ζ+\sqrt{ζ^2-1})} \right\}     \    where ζ>1 \end{align} \] 지난 글에 이어서 과도 감쇠(Over-damped)가 일어나는 경우의 특성을 살펴보기로 한다. Over-damped 응답 특성 Over-damped 일때 \[ K_p \cdot f(t-θ)\left\{1-\frac{e^{-(ζ-\sqrt{ζ^2-1})ω_n t}}{2\sqrt{ζ^2-1}  (ζ-\sqrt{ζ^2-1} )}+\frac{e^{-(ζ+\sqrt{ζ^2-1}) ω_n t}}{2\sqrt{ζ^2-1} (ζ+\sqrt{ζ^2-1}) } \right\} \] 위의 수식에서 지수함수 \( e^{-(ζ-\sqrt{ζ^2-1}) ω_n t}\)과 \(e^{-(ζ+\sqrt{ζ^2-1}) ω_n t}\)로부터 시상수 \(τ_1\)과 \(τ_2\)를 알 수 있으며, 역변환하기 전의 수식에서 구할 수 있다. \[ \begin{align} \frac{1}{s}&-\frac{1}{2\sqrt{ζ^2-1} (ζ-\sqrt{ζ^2-1})}  \cdot \frac{1}{s+(ζ-\sqrt{ζ^2-1}) ω_n)}\\[12pt]&+\frac{1}{2\sqrt{ζ^2-1}  (ζ+\sqrt{ζ^2-1})} \cdot \...