10. 라플라스(Laplace), Damping ratio ζ와 고유진동수 ωn으로 이루어진 2차 전달 함수의 Under-damped

라플라스(Laplace), Damping ratio와 고유진동수로 이루어진 2차 전달 함수의 Under-damped Damping ratio, ζ에 따라 역변환된 수식을 정리해보면 다음과 같다. \[ \begin{align} f(t)=K_p \cdot f(t-θ)(1-cosω_n t) \ \ \ \ where \ ζ=0 \end{align} \] \[ \begin{align} f(t)=K_p\cdot f(t-θ)\left\{1-\frac{e^{-ζω_n t}}{\sqrt{1-ζ^2}} sin(ω_n \sqrt{1-ζ^2 } t+cos^{-1}ζ) \right\} \ \ where \ 1>ζ>0 \end{align} \] \[ f(t)=K_p\cdot f(t-θ)\{1-e^{-ω_n t} (ω_n t+1)\} \ \ where \ ζ=1 \] \[ \begin{align} f(t)=K_p \cdot f(t-θ)\left\{ 1-\frac{e^{-(ζ-\sqrt{ζ^2-1}) ω_n t}}{2\sqrt{ζ^2-1} (ζ-\sqrt{ζ^2-1})} +\frac{e^{-(ζ+\sqrt{ζ^2-1}) ω_n t}}{2\sqrt{ζ^2-1} (ζ+\sqrt{ζ^2-1})} \right\} \ where ζ>1 \end{align} \] Damping ratio ζ와 고유 진동수 ω_n로 이루어진 2차 전달 함수에 입력으로서 계단 입력을 주었을 때의 응답 특성, Gain=1, θ=0, ω_n=2이며 ζ=0, 0.3, 1, 2의 값을 사용한 경우 다음과 같은 특성을 볼 수 있다. Undamped ωn=2, ζ=0 Under-damped ωn=2, ζ=0.3 Cirtically damped ωn=2, ζ=1 Over-damped ωn=2, ζ=2 각각의 Undampe...